
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Accelerating Snabb Programs

Fabian Bonk

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Accelerating Snabb Programs

Snabb Programme beschleunigen

Author Fabian Bonk
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Paul Emmerich, Dominik Scholz
Date April 15, 2018

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, April 15, 2018

Signature

Abstract

Snabb is a network function virtualization toolkit written in Lua. It allows users to
process packets using a customizable network of small Lua modules. libmoon is a Lua
wrapper around the DPDK toolkit for fast packet processing. The goal of this thesis
was to implement compatibility wrapper around libmoon allowing Snabb apps to run
on top of DPDK and thereby increase their performance as well as allow NICs without
Snabb-support to be used.

I

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Goal of the thesis . 2

2 Snabb 3
2.1 Overview . 3
2.2 Snabb Apps . 4
2.3 Snabb Core . 5
2.4 Snabb Programs . 6
2.5 Snabb Lib . 8

3 libmoon 9
3.1 Data Plane Development Kit (DPDK) 9
3.2 libmoon . 9

4 snabb-libmoon-compat 11
4.1 Approach . 11
4.2 DPDKDevice . 12
4.3 Runtime . 14
4.4 Library . 14
4.5 Compatibility . 15
4.6 License . 17

5 Performance 19
5.1 Hardware . 19
5.2 Methodology . 20
5.3 Results . 22

5.3.1 System A . 22
5.3.2 System B . 22
5.3.3 System C . 22
5.3.4 System D . 23
5.3.5 Evaluation . 23

II Contents

6 Conclusion 29
6.1 Results . 29
6.2 Future work . 29

Bibliography 31

III

List of Figures

2.1 Snabb structure [1] . 3
2.2 Example Snabb app network [1] . 4
2.3 Snabb forward app example . 5
2.4 Snabb echo server program . 7

4.1 snabb-libmoon-compat structure (adapted from Figure 2.1) 11
4.2 DPDKDevice implementation . 13
4.3 snabb-libmoon-compat forward app example 15
4.4 snabb-libmoon-compat echo program example 16

5.1 Performance measurement setup . 21
5.2 System A results . 24
5.3 System B results . 25
5.4 System C results . 26
5.5 System D results . 27

1

Chapter 1

Introduction

1.1 Outline

Network function virtualization (NFV) is the practice of abstracting network functions
into smaller, more manageable modules. By combining simple modules, even complex
network functions can be performed this way. Network function virtualization does
not require dedicated hardware such as application-speci�c integrated circuits (ASICs).
Instead it runs on cheap and readily available commodity (server) hardware.

Using modern CPU features such as Direct Memory Access (DMA) and Direct Cache
Access (DCA) in combination with modern, high-performance (at least 10GbE) NICs
can o�er similar performance to ASICs without the high price and development e�ort.
NFV allows operators to change a device’s con�guration at will and usually on-the-�y,
depending on current demands.

Snabb [2] is a �exible network function virtualization toolkit. It allows users to im-
plement network functions by combining Snabb-provided and self-written modules.
Modules forward packets between each other and perform basic network functions.
Combining multiple modules allows arbitrarily complex network functions. Most of
Snabb is written in the Lua programming language and run on LuaJIT [3]. Some internal
functionality is implemented in C and called from Lua using LuaJIT’s foreign function
interface [4].

libmoon [5] is a wrapper around DPDK [6] allowing fast packet processing using Lua
scripts. It, too, uses LuaJIT and its foreign function interface.

2 Chapter 1. Introduction

1.2 Goal of the thesis

The goal of this thesis is to implement a Snabb-compatible runtime that achieves a
performance improvement over Snabb by internally calling the Lua DPDK-wrapper
libmoon. Ideally it runs Snabb programs with only minor modi�cations.

3

Chapter 2

Snabb

2.1 Overview

Snabb allows �exible packet processing using so-called apps. Users launch and connect
apps together using programs. Programs are Lua scripts describing a network of apps.
Programs are run on the Snabb runtime Snabb Core. Snabb also o�ers a large library of
functions and modules allowing easy creation and modi�cation of packets. See Figure
2.1.

Figure 2.1: Snabb structure [1]

Snabb is largely written in Lua with some C functions to improve performance.

4 Chapter 2. Snabb

Snabb’s reference manual de�nes Snabb’s own interfaces as well as the methods that
need to be exposed by custom apps. [1]

Figure 2.2 visualizes an example Snabb program containing four apps, two of which
implement some �lter functionality with the other two being NICs. The arrows are
links along which packets �ow from app to app.

Figure 2.2: Example Snabb app network [1]

2.2 Snabb Apps

Apps are compact Lua modules that de�ne a set of inputs and/or outputs for packets.
Snabb itself o�ers a large variety of apps but also allows users to implement their own
apps.

Apps need to expose a :new() method that returns a new app instance. To interact with
other apps an app instance needs to have either a :pull() method, a :push() method
or both.

Snabb abstracts many di�erent network functions using apps: NICs are exposed as apps
with their drivers being written in Lua and included in the app; Pcap �les can be read
or written using apps; packets can be �ltered or modi�ed using apps.

2.3. Snabb Core 5

1 module(..., package.seeall)

2
3 local link = require("core.link")

4
5 Fwd = {}

6
7 function Fwd:new()

8 return setmetatable({transmitted = 0}, {__index = Fwd})

9 end

10
11 function Fwd:pull()

12 assert(self.output.output, "Fwd: output link not created")

13 assert(self.input.input, "Fwd: input link not created")

14 local n = link.nreadable(self.input.input)

15 for _ = 1, n do

16 link.transmit(self.output.output, link.receive(self.input.input))

17 end

18 self.transmitted = self.transmitted + n

19 end

20
21 function Fwd:report()

22 print(string.format("Fwd ’%s’ transmitted %d packets",

23 self.appname, self.transmitted))

24 end

Figure 2.3: Snabb forward app example

Figure 2.3 is a simple example app that just outputs all packets it receives on its input
link.

Line 14 queries the input link and thereby determines the amount of packets currently
stored in it. Lines 15-17 loop over the packets in the link and forward each packet onto
the output link. Line 18 additionally updates an app-internal packet counter.

In addition to its :pull() method it also de�nes an optional :report() method that
gives the user feedback on the app’s tra�c statistics. Snabb Core calls this method after
terminating the main loop.

2.3 Snabb Core

Snabb Core is Snabb’s runtime. It’s responsible for initializing, starting and stopping
apps, connecting them and �nally running the app network. Snabb runs apps in a
single loop, repeatedly calling each app’s :push() and :pull() methods. Snabb calls
this behavior breathing.

Snabb’s runtime may be launched multiple times in sequence with di�erent app network

6 Chapter 2. Snabb

con�gurations in a single Snabb program. The core.app (called engine in Snabb’s refer-
ence manual, and henceforth in this thesis) module’s config() and main() functions
recon�gure and run the network respectively.

Snabb Core initializes each app’s input and output tables according to the con�guration
given to engine.config() by the user program. Apps can read from and write to the
links in these tables using the functions provided by the core.link module.

Apps are connected using ring bu�ers (called links) from which exactly one app reads
packets and onto which exactly one app writes packets. Links are �xed in size, dropping
new packets when full.

Packets are represented as simple structures containing a length �eld and a data pointer.
LuaJIT’s foreign function interface allows easy access to these structures. Snabb main-
tains an array of empty packet bu�ers to speed up allocation.

2.4 Snabb Programs

Snabb Programs are the user-de�ned Lua scripts that instruct Snabb Core to con�gure
and run the app network.

Usually Snabb programs contain a run() function which acts as the entrypoint. Snabb
passes the command line arguments into this function. Snabb o�ers basic command line
parsing functionality via Snabb Lib (see 2.5). The user program may be any arbitrary Lua
program. Snabb’s example programs contain both very simple pcap replay programs
as well as large and complicated systems such as an implementation1 of the lwAFTR
data-plane part of the "Lightweight 4over6" IPv6-transition mechanism2.

Figure 2.4 is an example Snabb program that connects a forward app and an Intel82599
app. This creates a fast echo server that replays all packets it receives.

Lines 10-22 parse the command line options given by the user. Lines 26-30 create an
empty Snabb con�guration and then proceed to add an app for the NIC as well as a
number of forward apps (see Figure 2.3). In lines 32-37 all apps are connected with links.
Finally, in lines 41-44, the con�guration is loaded into the engine and run.

The programmer has to bind the program to the appropriate CPU manually using
Snabb’s lib.numa library.

1https://github.com/snabbco/snabb/tree/master/src/program/lwaftr
2https://tools.ietf.org/html/rfc7596#section-6.2

https://github.com/snabbco/snabb/tree/master/src/program/lwaftr
https://tools.ietf.org/html/rfc7596#section-6.2

2.4. Snabb Programs 7

1 module(..., package.seeall)

2
3 local fwd = require("apps.fwd.fwd")

4 local intel = require("apps.intel.intel_app")

5 local numa = require("lib.numa")

6
7 function run(parameters)

8 print("running echo")

9
10 if #parameters > 4 or #parameters < 1 then

11 print("Usage: echo <pci-addr> [chain-length] [duration] [cpu]\nexiting...")

12 main.exit(1)

13 end

14
15 local pciaddr = parameters[1]

16 local chainlen = tonumber(parameters[2]) or 1

17 local cpu = tonumber(parameters[4])

18
19 if chainlen < 1 then

20 print("chain-length < 1, defaulting to 1")

21 chainlen = 1

22 end

23
24 local c = config.new()

25
26 config.app(c, "intel", intel.Intel82599, {pciaddr = pciaddr})

27
28 for i = 1, chainlen do

29 config.app(c, "fwd" .. i, fwd.Fwd)

30 end

31
32 for i = 1, chainlen - 1 do

33 config.link(c, string.format("fwd%d.output -> fwd%d.input", i, i + 1))

34 end

35
36 config.link(c, "intel.tx -> fwd1.input")

37 config.link(c, string.format("fwd%d.output -> intel.rx", chainlen))

38
39 -- need to manually bind to the appropriate CPU core

40 -- this needs to be determined by the user

41 if cpu then numa.bind_to_cpu(cpu) end

42 engine.configure(c)

43 engine.busywait = true

44 engine.main{duration = tonumber(parameters[3])}

45 end

Figure 2.4: Snabb echo server program

8 Chapter 2. Snabb

2.5 Snabb Lib

Snabb Lib is a set of libraries bundled with Snabb. It includes functionality for building
packets, timers, checksumming etc. It uses some C code as well as LuaJIT’s DynASM [7]
dynamic assembler. Many of Snabb’s bundled apps use Snabb Lib.

9

Chapter 3

libmoon

3.1 Data Plane Development Kit (DPDK)

DPDK is a networking toolkit targeted at high-performance packet processing without
using dedicated hardware. It provides a large set of drivers for a variety of NICs.1 It runs
on Linux computers (x86-64, ARM and POWER), although a subset of its functionality
is also available on FreeBSD. In this thesis we only used x86-64 Linux computers and
Intel ixgbe/i40e-compatible NICs.

DPDK achieves its high performance by using batching, polling and through custom
drivers supporting a variety of hardware acceleration mechanisms.

Batching refers to processing a batch of packets at once, thereby greatly decreasing the
per-packet overhead. Polling is a technique whereby the CPU repeatedly checks for
incoming packets on the NIC as fast as possible, similar to busy-waiting. With interrupt-
driven I/O the operating system has to call the interrupt handler which in turn calls
the receiving process, introducing unnecessary overhead due to additional code and
context switches. Polling uses 100% of CPU time increasing power consumption and
preventing the CPU from doing other work.

3.2 libmoon

libmoon is a Lua wrapper around DPDK. It exposes many DPDK functions and features
to Lua scripts.

Building libmoon yields a binary that serves as a replacement for LuaJIT and automati-
cally loads libmoon’s libraries into the interpreter.

1https://dpdk.org/doc/nics

https://dpdk.org/doc/nics

10 Chapter 3. libmoon

These libraries include abstractions for DPDK NICs, many DPDK functions and struc-
tures as well as utility functions for allocating memory, creating and parsing protocol
headers, etc.

libmoon automatically schedules each thread on the appropriate NUMA node/CPU
core.

11

Chapter 4

snabb-libmoon-compat

4.1 Approach

Figure 4.1: snabb-libmoon-compat structure (adapted from Figure 2.1)

The chosen approach to create a Snabb-API-compatible runtime is a three-part solution:

• Implementing a Snabb Core-compatible runtime

• Exposing DPDK NICs as Snabb apps

• Implementing a Snabb-API-compatible library

12 Chapter 4. snabb-libmoon-compat

To achieve this snabb-libmoon-compat was created. snabb-libmoon-compat is both a
fork and a rewrite of Snabb: It reuses some Snabb code with modi�cations while some
modules were reimplemented entirely from scratch. It has a similar directory structure
to Snabb but was adapted to be run using libmoon. Within the source directory there are
directories for included apps (src/apps), included libraries (src/lib), included programs
(src/program) as well as the runtime (src/core). Each app and program is contained in
its own subdirectory. snabb-libmoon-compat contains no C code; everything is written
in Lua. Therefore there is no need to compile it; it can simply be run using the LuaJIT
embedded into the libmoon binary.

Upon startup snabb-libmoon-compat spawns a libmoon slave task that runs the actual
snabb program while the master task does scheduling, facilitated by libmoon. The slave
task then loads similar libraries into global scope as Snabb and launches the Snabb user
program.

4.2 DPDKDevice

Due to Snabb’s simple API DPDK devices were easily exposed as Snabb apps.

DPDKDevice:new() simply calls libmoon’s device con�guration function, thereby initial-
izing the chosen NIC, setting up a single receive queue and a single transmit queue as
well as allocating a memory pool for packets. DPDKDevice:push() simply reads packets
from the app’s input.input link and calls its transmit queue’s :sendN() method. Simi-
larly DPDKDevice:pull() just calls its receive queue’s :tryRecv() method and forwards
the received packets onto the output.output link.

Figure 4.2 shows the entire DPDKDevice implementation.

4.2. DPDKDevice 13

1 module(..., package.seeall)

2
3 local lm = require "libmoon"

4 local device = require "device"

5 local memory = require "memory"

6 local log = require "log"

7 local link = require "core.link"

8 local nreadable, receive, transmit =

9 link.nreadable, link.receive, link.transmit

10
11 DPDKDevice = {}

12
13 function DPDKDevice:new(dev_id)

14 local dev = device.config{

15 port = dev_id,

16 txQueues = 1,

17 rxQueues = 1,

18 disableOffloads = true

19 }

20 local obj = {

21 dev = dev,

22 tx = dev:getTxQueue(0),

23 rx = dev:getRxQueue(0),

24 bufs = memory.bufArray(link.max),

25 }

26 return setmetatable(obj, {__index = DPDKDevice})

27 end

28
29 function DPDKDevice:push()

30 local n = nreadable(self.input.input)

31 for i = 1, n do -- read all packets from the input link

32 self.bufs[i] = receive(self.input.input)

33 end

34 self.tx:sendN(self.bufs, n) -- forward all packets onto the wire

35 end

36
37 function DPDKDevice:pull()

38 -- receive a burst of packets

39 local rx = self.rx:tryRecv(self.bufs, 0)

40 for i = 1, rx do -- forward all packets onto the output link

41 transmit(self.output.output, self.bufs[i])

42 end

43 end

44
45 function DPDKDevice:report()

46 local stats = self.dev:getStats()

47 log:info("DPDKDevice ’%s’ sent %d packets and received %d packets",

48 self.appname, tonumber(stats.opackets), tonumber(stats.ipackets))

49 end

Figure 4.2: DPDKDevice implementation

14 Chapter 4. snabb-libmoon-compat

4.3 Runtime

The runtime consists of several modules implementing links, packets, a basic utility
library as well as the engine.

Links reuse Snabb’s implementation with some small modi�cations. Therefore their
performance is the same as Snabb.

Packets were implemented similarly to Snabb with only minor modi�cations being
necessary. Snabb represents packets as simple structures consisting of a length �eld
and a pointer to the packet’s contents. libmoon uses DPDK’s more complex rte_mbuf

structure and o�ers setter and getter functions for most �elds. An rte_mbuf contains
additional metadata besides the packet’s length and data such as a timestamp. Since
libmoon already provides means for allocating and freeing packet bu�ers snabb-libmoon-
compat’s packet module is actually smaller and less complex than Snabb’s version.

Only functions necessary for Snabb’s protocol stack were copied from Snabb’s codebase
into snabb-libmoon-compat’s core.lib module.

The engine implementation was adapted from Snabb’s engine. The engine parses the
given con�guration and creates a graph with apps being nodes and links being edges.
From this graph it computes the necessary setup actions, performs them and then
runs the main loop. Large parts of Snabb’s engine could be reused such as the graph
computation and app con�guration functions.

4.4 Library

Snabb’s standard library is large, containing a multitude of protocol implementations,
drivers and utility functions. Implementing all of these is out of scope for this thesis.
Instead only a subset was ported or implemented allowing basic Snabb programs to be
run on snabb-libmoon-compat with little modi�cation.

Snabb’s protocol stack could be reused almost entirely without modi�cation. These
modules contain functionality for assembling packets from headers using simple con-
structors. In addition to that libmoon’s protocol stack is also entirely available to users.

Generally snabb-libmoon-compat users have access to libmoon’s entire functionality ex-
cept multithreading. Currently multithreading is not possible due to the snabb-libmoon-
compat runtime running in a libmoon slave thread. libmoon only allows the master
thread to spawn new threads. It should be possible to move the runtime into libmoon’s
master thread (see 6.2).

4.5. Compatibility 15

4.5 Compatibility

Figure 4.3 is a snabb-libmoon-compat-compatible version of Chapter 2’s Figure 2.3. It
required no modi�cation at all although through snabb-libmoon-compat it can take
advantage of libmoon’s more advanced logging module.

1 module(..., package.seeall)

2
3 local log = require("log")

4 local link = require("core.link")

5
6 Fwd = {}

7
8 function Fwd:new()

9 return setmetatable({transmitted = 0}, {__index = Fwd})

10 end

11
12 function Fwd:pull()

13 if not self.output.output then

14 log:fatal("Fwd: output link not created")

15 elseif not self.input.input then

16 log:fatal("Fwd: input link not created")

17 end

18 local n = link.nreadable(self.input.input)

19 for _ = 1, n do

20 link.transmit(self.output.output, link.receive(self.input.input))

21 end

22 self.transmitted = self.transmitted + n

23 end

24
25 function Fwd:report()

26 log:info("Fwd ’%s’ transmitted %d packets",

27 self.appname, self.transmitted)

28 end

Figure 4.3: snabb-libmoon-compat forward app example

Figure 4.4 is a snabb-libmoon-compat-compatible version of Chapter 2’s Figure 2.4. It,
too, is almost identical with only the Intel82599-App having been replaced with the
DPDKDevice-App. Snabb requires the NIC to be speci�ed by its PCIe-address whereas
DPDK uses simple numbering.

16 Chapter 4. snabb-libmoon-compat

1 module(..., package.seeall)

2
3 local fwd = require("apps.fwd.fwd")

4 local dpdkdev = require("apps.dpdk_device.dpdk_device")

5 local log = require("log")

6
7 function run(parameters)

8 log:info("running echo")

9
10 if #parameters > 3 or #parameters < 1 then

11 log:warn("Usage: echo <dev-id> [chain-length] [duration]\nexiting...")

12 main.exit(1)

13 end

14
15 local devid = tonumber(parameters[1])

16 local chainlen = tonumber(parameters[2]) or 1

17
18 if chainlen < 1 then

19 log:warn("chain-length < 1, defaulting to 1")

20 chainlen = 1

21 end

22
23 local c = config.new()

24
25 config.app(c, "dpdk", dpdkdev.DPDKDevice, devid)

26
27 for i = 1, chainlen do

28 config.app(c, "fwd" .. i, fwd.Fwd)

29 end

30
31 for i = 1, chainlen - 1 do

32 config.link(c, string.format("fwd%d.output -> fwd%d.input", i, i + 1))

33 end

34
35 config.link(c, "dpdk.output -> fwd1.input")

36 config.link(c, string.format("fwd%d.output -> dpdk.input", chainlen))

37
38 -- no need to bind to the appropriate CPU core

39 -- libmoon does that for us

40 engine.configure(c)

41 engine.main{duration = tonumber(parameters[3])}

42 end

Figure 4.4: snabb-libmoon-compat echo program example

4.6. License 17

Snabb module compatibility level
core.config full
core.app partial
core.link full
core.packet full
core.memory none
core.shm partial
core.counter full
core.histogram none
core.lib partial
core.worker none
main full
lib.protocol full
apps.pcap full

Table 4.1: snabb-libmoon-compat API compatibility

Most basic Snabb apps, that don’t depend on C code, and some Snabb libraries should
run out of the box or require minimal porting e�ort. Snabb programs will have to be
modi�ed to replace Snabb’s driver apps (such as Intel82599 or Intel10G) with snabb-
libmoon-compat’s DPDKDevice app. Obviously Snabb’s own apps that depend on not
yet ported libraries won’t work out of the box.

Table 4.1 shows snabb-libmoon-compat’s API compatibility. All modules not mentioned
are not implemented. core.shm and core.counter are not thread-safe and have only
been included for compatibility with existing Snabb apps. Please note that, should
Snabb Pull Request #13201 be accepted, apps.pcap will only be partially compatible
with Snabb.

Additionally a set of example programs and apps has been included with snabb-libmoon-
compat. These include simple pcap replay, a basic packet capture utility as well as a
simple but slow packet generator.

4.6 License

snabb-libmoon-compat will be released under the Apache 2.0 license23, same as Snabb.
All �les and functions taken from Snabb have been marked as such. Modi�ed �les have
been marked with "Modi�cations by Fabian Bonk." These are

• src/core/link.lua
1https://github.com/snabbco/snabb/pull/1320
2https://www.apache.org/licenses/LICENSE-2.0
3LICENSE �le in snabb-libmoon-compat’s source tree

https://github.com/snabbco/snabb/pull/1320
https://www.apache.org/licenses/LICENSE-2.0

18 Chapter 4. snabb-libmoon-compat

• src/core/app.lua

• src/core/packet.lua

• src/core/con�g.lua

• src/core/lib.lua

• all of src/lib/protocol

• src/lib/lua/class.lua

snabb-libmoon-compat is available on GitHub4 and the author’s homepage5.

4https://github.com/Reperator/snabb-libmoon-compat/
5https://fabianbonk.de/snabb-libmoon-compat/

https://github.com/Reperator/snabb-libmoon-compat/
https://fabianbonk.de/snabb-libmoon-compat/

19

Chapter 5

Performance

5.1 Hardware

Snabb’s and snabb-libmoon-compat’s performance was compared on three test systems.
The systems were chosen because they represent old consumer, high-end workstation,
low-end server and high-end server CPUs. See Table 5.1 for an overview of the test
systems.1

System A consisted of an Intel Xeon E5-2620 v3 [8] CPU and both an Intel XL710 [9]
40GbE NIC (snabb-libmoon-compat only) and an Intel X520-T2 [10] 10GbE NIC as well
as 32 GiB of DDR4-2133 quad-channel ECC memory.

System B consisted of dual Intel Xeon E5-2630 v4 [11] CPUs as well as the same NICs as
system A. Each CPU has 64 GiB of DDR4-2133 quad-channel ECC memory for a total
of 128 GiB.

System C consisted of an Intel i7-3770K [12] (overclocked to 4.5 GHz) and 16 GiB of
DDR3-2000 dual-channel non-ECC memory.

System D consisted of an AMD Ryzen Threadripper 1950X [13] and 32 GiB of DDR4-3200
quad-channel non-ECC memory.

Systems C and D used Intel X520-DA2 [14] and X520-DA1 [15] (dual-port/single-port
versions of the same NIC) 10GbE NICs respectively.

All systems ran Debian Linux 4.9.0 and slight modi�cations of the latest development
versions of Snabb2 and libmoon3. The modi�cations were necessary to add important
testing functionality.

1The given CPU frequencies are the maximum single core turbo frequencies. AMD’s XFR technology
can boost the 1950X to up to 4.2 GHz.

2https://github.com/Reperator/snabb; commit bee107d9f80b18dae4b88612363406eaf049083e
3https://github.com/Reperator/libmoon; commit 9c093d111cd8037b24ecd51bfdc1f35ef2aeb3e4

https://github.com/Reperator/snabb
https://github.com/Reperator/libmoon

20 Chapter 5. Performance

System CPU CPU freq. L3 cache NIC
A1 Intel Xeon E5-2620 v3 3.2 GHz 15 MiB Intel XL710
A2 Intel Xeon E5-2620 v3 3.2 GHz 15 MiB Intel 82599ES
B1 2 Intel Xeon E5-2630 v4 3.1 GHz 25 MiB Intel XL710
B2 2 Intel Xeon E5-2630 v4 3.1 GHz 25 MiB Intel 82599ES
C Intel i7-3770K 4.5 GHz 8 MiB Intel 82599ES
D AMD Ryzen Threadripper 1950X 4.2 GHz 32 MiB Intel 82599ES

Table 5.1: Test system speci�cations

5.2 Methodology

Both Snabb and snabb-libmoon-compat were tested by generating a large amount of
small Ethernet packets (60 byte payload, 80 byte including preamble, start of frame de-
limiter and interpacket gap) on a separate machine using libmoon’s examples/pktgen.lua.
Tra�c was always generated at a higher rate than Snabb or snabb-libmoon-compat could
forward by using multiple CPU cores on the generating machine while the programs
under test always ran on just one core.

Systems A and B as well as systems C and D generated tra�c for each other.

The tested Snabb programs were chains of forward apps (see Figures 2.3 and 4.3) of length
1 through 100 with one DPDKDevice app (snabb-libmoon-compat) or one Intel82599
app (Snabb) at the ends of the chain. Figures 2.4 and 4.4 contain the snabb programs
that were used. Snabb’s engine.busywait feature was activated, causing Snabb to also
employ polling. Snabb was manually bound to the best-performing core. Figure 5.1
shows the structure of the snabb program that ran on the test systems.

The �nal results are the peak packet rate measurements created by libmoon’s stats

feature on the generating machine after ~10 seconds of full load. The peak packet rate
is usually within 1% of the average packet rate of the run.

Snabb does not support any 40GbE NICs.

Figure 5.1 details the testing setup.

5.2. Methodology 21

Figure 5.1: Performance measurement setup

22 Chapter 5. Performance

5.3 Results

Snabb’s results are green; snabb-libmoon-compat’s results are blue (dark blue for 40GbE
results). For each system there are two graphs: The �rst one showing the range from 1
through 100 forward apps; the second one detailing the more important range from 1
through 20 forward apps.

In our tests Intel XL710 NICs were not able to achieve packet rates higher than ~30
Mpps. Therefore this is the cuto� point of the graphs.

5.3.1 System A

See Figure 5.2.

On system A Snabb never reached 10GbE wire-rate. snabb-libmoon-compat was able
to keep wire-rate at chain length 1 but dropped o� soon afterwards. At around chain
length 50 memory bandwidth became the limiting factor for both Snabb and snabb-
libmoon-compat.

Using 40GbE NICs allowed for a maximum packet rate of 17.34 Mpps which equates to
a ~16% improvement over 10GbE line rate (Snabb’s maximum rate).

5.3.2 System B

See Figure 5.3.

System B behaved similarly to system A.

Going from a 10GbE NIC to a 40GbE NIC yielded an even larger performance increase
than on system A. A maximum packet rate of 18.65 Mpps was measured, a ~25% perfor-
mance increase over 10GbE wire-rate.

5.3.3 System C

See Figure 5.4.

System C’s maximum performance was limited due to lack of support for Direct Cache
Access (DCA). The NIC can only use Direct Memory Access (DMA) to write packets
into system RAM from which the CPU needs to retrieve it manually. The other systems
all support DCA, so their NICs write packets directly into the CPUs level 3 cache.
Additionally system C’s CPU is old (6 years at the time of writing) and only supports
DDR3 memory instead of the newer DDR4 standard, limiting bandwidth even further.

5.3. Results 23

Therefore both Snabb and snabb-libmoon-compat were capped at ~8 Mpps, though
snabb-libmoon-compat was able to keep this rate at higher chain lengths.

5.3.4 System D

See Figure 5.5.

System D had the best 10GbE performance of all test systems. snabb-libmoon-compat
was able to keep wire-rate until a chain-length of 10. A probable cause for this may be
the CPUs high frequency.

5.3.5 Evaluation

snabb-libmoon-compat was consistently able to match or outperform Snabb. DPDK’s
high-performance drivers yielded both improvements at 10GbE as well as opened up
the possibility of using 40GbE NICs. 40GbE NICs were able to increase the maximum
single core forwarding rate from 14.88 Mpps to a peak of 18.65 Mpps. This equates to a
performance advantage of 25% over Snabb at a chain length of 1.

System D achieved a peak performance advantage over Snabb of ~40% at a chain length
of 10.

At very long chain lengths of more than 50 memory bandwidth became the limiting
factor for both Snabb and snabb-libmoon-compat. Very long chains are unusual but
may be required for certain setups (see [16]).

Much larger performance improvements can in theory be achieved by running multiple
instances of the app network in separate threads on separate CPU cores, though this
requires major modi�cations to snabb-libmoon-compat (see 6.2).

24 Chapter 5. Performance

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

10GbE maximum

~XL710 maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)
snabb-libmoon-compat(40GbE)

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

10GbE maximum

~XL710 maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)
snabb-libmoon-compat(40GbE)

Figure 5.2: System A results

5.3. Results 25

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

10GbE maximum

~XL710 maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)
snabb-libmoon-compat(40GbE)

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

10GbE maximum

~XL710 maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)
snabb-libmoon-compat(40GbE)

Figure 5.3: System B results

26 Chapter 5. Performance

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

10GbE maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

10GbE maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)

Figure 5.4: System C results

5.3. Results 27

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

10GbE maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

10GbE maximum

Number of forward apps

Pa
ck

et
ra

te
[M

pp
s]

Snabb
snabb-libmoon-compat(10GbE)

Figure 5.5: System D results

29

Chapter 6

Conclusion

6.1 Results

In this work we ported Snabb’s runtime to libmoon/DPDK by partially reimplementing
its components and libraries. Users are now able to bene�t from libmoon’s features as
well as DPDK’s larger hardware support. Programs can now use all 40GbE and 100GbE
NICs supported by libmoon.

Currently most apps only work with some modi�cation. snabb-libmoon-compat’s
packet structure can only be used via libmoon’s accessors; Snabb’s �elds have di�erent
names. Theoretically this could be �xed by modifying libmoon or possibly by creating
a pseudo-rte_mbuf structure with di�erent �eld names.

The thesis’ goal of accelerating Snabb programs was achieved: By adding support for
faster NICs throughput improved by up to 25%. Additionally overhead in app networks
up to 50 apps was slightly reduced. Real-world Snabb programs usually have additional
functionality besides simple forwarding; this additional overhead cannot easily be
reduced, making multi-core scaling a necessary next step.

6.2 Future work

Possible directions of future work include implementing a larger set of Snabb’s libraries
and making use of libmoon’s native multithreading to improve performance.

API-compatibility can be improved by either modifying Snabb’s code, by mapping
functions onto libmoon or by reimplementing functionality entirely.

Theoretically large performance gains are possible by spawing a thread for each app
or worker threads for a group of related apps. Most apps are independent of each
other and can therefore run in separate threads without risk of race conditions. The

30 Chapter 6. Conclusion

single-producer, single-consumer structure of links should lend itself to multithreading.
Within threads Snabb’s simple and fast links could be used without synchronization;
when connecting apps from di�erent threads DPDK’s rte_ring structure could be used.
This structure is already available through libmoon’s pipe module. If more apps can
be bundled into one thread these apps will not su�er from synchronization overhead.
Cache performance and possible dependencies between apps need to be taken into
account but further exploration in this direction seems promising.

Another requirement is testing. Currently snabb-libmoon-compat is very much a proto-
type and as such it has no testsuite. Due to this prototype status it should not be used
in production environments.

API Documentation is required. snabb-libmoon-compat’s API di�ers in some aspects
from Snabb and therefore documentation needs to be adjusted or rewritten.

Lastly snabb-libmoon-compat’s user interface needs improvement. The allowed user
program structure is less �exible than Snabb. Currently each user program needs to be
in a separate directory with matching directory and �le names.

31

Bibliography

[1] The Snabb Authors, Snabb Reference Manual, https://snabbco.github.io/.

[2] Luke Gorrie et al., “Snabb,” https://github.com/snabbco/snabb.

[3] Mike Pall, “LuaJIT,” https://luajit.org/.

[4] ——, LuaJIT �.* API Functions, https://luajit.org/ext_�_api.html.

[5] Paul Emmerich, “libmoon,” https://github.com/libmoon/libmoon.

[6] Linux Foundation, “Data Plane Development Kit,” https://dpdk.org/.

[7] Mike Pall, “DynASM,” https://luajit.org/dynasm.html.

[8] “Intel Xeon Processor E5-2620 v3,” https://ark.intel.com/products/83352/
Intel-Xeon-Processor-E5-2620-v3-15M-Cache-2_40-GHz.

[9] “Intel Ethernet Converged Adapter XL710-QDA2,” https://ark.intel.com/products/
83967/Intel-Ethernet-Converged-Network-Adapter-XL710-QDA2.

[10] “Intel Ethernet Server Adapter X520-T2,” https://www.intel.de/content/dam/doc/
product-brief/ethernet-server-adapter-x520-t2-brief.pdf.

[11] “Intel Xeon Processor E5-2630 v4,” https://ark.intel.com/products/92981/
Intel-Xeon-Processor-E5-2630-v4-25M-Cache-2_20-GHz.

[12] “Intel Core i7-3770K Processor,” https://ark.intel.com/products/65523/
Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz.

[13] “AMD Ryzen Threadripper 1950X,” https://www.amd.com/en/products/cpu/
amd-ryzen-threadripper-1950x.

[14] “Intel Ethernet Converged Adapter X520-DA2,” https://ark.intel.com/products/
39776/Intel-Ethernet-Converged-Network-Adapter-X520-DA2.

[15] “Intel Ethernet Converged Adapter X520-DA1,” https://ark.intel.com/products/
68669/Intel-Ethernet-Converged-Network-Adapter-X520-DA1.

[16] W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan, and T. Wood, “Flurries:
Countless Fine-Grained NFs for Flexible Per-Flow Customization,” in Proceedings

https://snabbco.github.io/
https://github.com/snabbco/snabb
https://luajit.org/
https://luajit.org/ext_ffi_api.html
https://github.com/libmoon/libmoon
https://dpdk.org/
https://luajit.org/dynasm.html
https://ark.intel.com/products/83352/Intel-Xeon-Processor-E5-2620-v3-15M-Cache-2_40-GHz
https://ark.intel.com/products/83352/Intel-Xeon-Processor-E5-2620-v3-15M-Cache-2_40-GHz
https://ark.intel.com/products/83967/Intel-Ethernet-Converged-Network-Adapter-XL710-QDA2
https://ark.intel.com/products/83967/Intel-Ethernet-Converged-Network-Adapter-XL710-QDA2
https://www.intel.de/content/dam/doc/product-brief/ethernet-server-adapter-x520-t2-brief.pdf
https://www.intel.de/content/dam/doc/product-brief/ethernet-server-adapter-x520-t2-brief.pdf
https://ark.intel.com/products/92981/Intel-Xeon-Processor-E5-2630-v4-25M-Cache-2_20-GHz
https://ark.intel.com/products/92981/Intel-Xeon-Processor-E5-2630-v4-25M-Cache-2_20-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-1950x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-1950x
https://ark.intel.com/products/39776/Intel-Ethernet-Converged-Network-Adapter-X520-DA2
https://ark.intel.com/products/39776/Intel-Ethernet-Converged-Network-Adapter-X520-DA2
https://ark.intel.com/products/68669/Intel-Ethernet-Converged-Network-Adapter-X520-DA1
https://ark.intel.com/products/68669/Intel-Ethernet-Converged-Network-Adapter-X520-DA1

32 Bibliography

of the 12th International on Conference on emerging Networking EXperiments and
Technologies, CoNEXT 2016, Irvine, California, USA, December 12-15, 2016, 2016.
[Online]. Available: http://faculty.cs.gwu.edu/timwood/papers/16-CoNext-�urries.
pdf

http://faculty.cs.gwu.edu/timwood/papers/16-CoNext-flurries.pdf
http://faculty.cs.gwu.edu/timwood/papers/16-CoNext-flurries.pdf

	Introduction
	Outline
	Goal of the thesis

	Snabb
	Overview
	Snabb Apps
	Snabb Core
	Snabb Programs
	Snabb Lib

	libmoon
	Data Plane Development Kit (DPDK)
	libmoon

	snabb-libmoon-compat
	Approach
	DPDKDevice
	Runtime
	Library
	Compatibility
	License

	Performance
	Hardware
	Methodology
	Results
	System A
	System B
	System C
	System D
	Evaluation

	Conclusion
	Results
	Future work

	Bibliography

