
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

PCIe and DMA in MirageOS

Fabian Bonk

Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

PCIe and DMA in MirageOS

PCIe und DMA in MirageOS

Author: Fabian Bonk
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Paul Emmerich
Date: June 15, 2020

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, June 15, 2020
Location, Date Signature

Abstract

MirageOS is a unikernel operating system targeting hypervisors. MirageOS generates standard
executables for Unix-like operating systems as well as standalone virtual machine images for
hypervisors. One of the hypervisors MirageOS targets is Linux’s KVM which is supported
through the Solo5 unikernel execution environment.

In this thesis we have enabled MirageOS unikernels to communicate with PCIe devices such as
network cards by creating a framework for MirageOS targeting Linux as well as Solo5.

The framework extends two of MirageOS’ target platforms and allows unikernels to request
PCIe devices from their host. Unikernels that include hardware drivers can take control of these
devices and communicate with them directly via DMA instead of going through the host system.

On the Solo5 unikernel execution environment we mapped PCIe device regions and DMA-ready
memory directly into the unikernel’s virtual machine, whereas for MirageOS’ Unix backend we
created a library for setting up such mappings directly from the unikernel’s process. In both
cases we made use of Linux’s VFIO subsystem for accessing PCIe devices from userspace.

We have also ported the existing userspace network driver ixy.ml which is written in OCaml to
our new framework. By wrapping this driver in a MirageOS-compatible network interface, we
were able to move the driver into the unikernel and improve networking performance significantly
compared to previous MirageOS deployments relying on TAP-networking via the unikernel’s
host. We measured 3.25 Gbit/s of TCP throughput; a twelve-fold increase on MirageOS’ Unix
backend and a two-fold increase on MirageOS’ Solo5 backend. Through this wrapper ixy.ml can
be used with any existing MirageOS program requiring a networking device.

Contents

1 Introduction 1
1.1 Outline . 1
1.2 Goal of the thesis . 2

2 MirageOS 3
2.1 Compilation Targets . 3
2.2 MirageOS programming . 3

2.2.1 OCaml functors . 4
2.2.2 MirageOS functors . 4

2.3 Why unikernels? . 6
2.3.1 Security . 6
2.3.2 Efficiency . 7

2.4 Drivers in MirageOS . 7
2.5 MirageOS structure . 7

2.5.1 Platform libraries . 8
2.5.2 Cooperative multithreading in MirageOS 8

3 Solo5 11
3.1 MirageOS on hvt . 11
3.2 hvt on KVM . 12

3.2.1 Setup phase . 12
3.2.2 Runtime phase . 12

3.3 Hardware Access Modifications . 14
3.3.1 Structure . 15
3.3.2 x86_64 paging . 17
3.3.3 PCIe . 18
3.3.4 DMA . 18

3.4 PCIe on other backends . 20

4 Mirage-pci 23
4.1 mirage-pci . 23
4.2 Building unikernels with PCIe support 23
4.3 Mirage-pci-solo5 . 25

4.3.1 Scheduling . 26
4.4 Mirage-pci-unix . 29

5 Performance 31
5.1 Raw PCIe and DMA performance . 32
5.2 MirageOS networking performance . 32

6 Conclusion 41
6.1 Future work . 41

Literatur 43

II

List of Figures

2.1 Example functor . 4
2.2 MirageOS echo server . 5
2.3 Example echo server configuration . 6
2.4 Example mirage invocation targeting macOS 6
2.5 Overview of a MirageOS unikernel (containing an application) running

on Linux . 9

3.1 Overview of a MirageOS unikernel running on Solo5’s hvt 13
3.2 Example hvt manifest file of a unikernel requesting a network device and

a block device . 14
3.3 Overview of a MirageOS unikernel communicating with PCIe devices on

Solo5’s hvt . 16
3.4 x86_64 long mode virtual address structure (4 KiB page) 17
3.5 x86_64 long mode virtual address structure (2 MiB huge page) 17
3.6 x86_64 long mode virtual address structure (1 GiB huge page) 17
3.7 Example hvt manifest file of a unikernel requesting two PCIe devices, a

network device and 16 MiB of DMA-ready memory 19
3.8 Structure solo5_pci_info . 20
3.9 Example hvt memory map on x86_64 using the manifest from Figure 3.7 21

4.1 Mirage_pci.S module type . 24
4.2 Type representing a PCIe device’s metadata in MirageOS 25
4.3 Type representing a PCIe device in mirage-pci-solo5 26
4.4 ixy.ml’s implementation of Mirage_net.S’ listen function 28
4.5 Type representing a PCIe device in mirage-pci-unix 29
4.6 Overview of a MirageOS unikernel communicating with PCIe devices on

Linux . 30

5.1 Overview of the hvt benchmark unikernel 33

5.2 Overview of the Linux benchmark unikernel 34
5.3 Overview of the Linux benchmark program 35
5.4 Configuration for the unikernel from Figure 5.5 36
5.5 Unikernel that retransmits all received packets to the sender 36
5.6 Program that retransmits all received packets to the sender 37
5.7 Latency measurements using ixy.ml on hvt, mirage-unix and Linux . . . 37
5.7 Latency measurements using ixy.ml on hvt, mirage-unix and Linux . . . 38
5.7 Latency measurements using ixy.ml on hvt, mirage-unix and Linux . . . 39
5.8 TCP throughput measurements using mirage_iperf 39

IV

Chapter 1

Introduction

1.1 Outline

Stripping away unnecessary code is a good way of reducing a program’s attack sur-
face. Fewer lines of code usually correlates with fewer bugs. Fewer bugs lead to fewer
externally exploitable security flaws (aka remote holes). However, most programs re-
quire an operating system to run on top of. The operating system provides necessary
functionality, such as drivers, file systems, and networking.

The idea of library operating systems (like MirageOS) is to strip away any unnecessary
operating system code. A static web server, for example, likely doesn’t need an audio
driver or a file system. Library operating systems move OS components into standalone
libraries that can be linked into the application at compile-time [6] [12].

MirageOS goes one step further by rewriting OS components in OCaml, a memory-safe,
statically typed, functional, and compiled programming language. MirageOS applica-
tions are also written in OCaml and use MirageOS’ components as libraries. These
applications are deployed as virtual machines on hypervisors like Xen or Linux’s KVM.
Such applications are known as unikernels [12] [11].

Unfortunately, by recreating components from scratch, MirageOS also throws out all ac-
tually required functionality that is not yet implemented in OCaml, including hardware
drivers. To communicate with the outside world, MirageOS defines a set of interfaces
for block devices, network devices, etc. The hypervisors, on which MirageOS programs
run, implement these interfaces using their own drivers. These drivers are not written
in OCaml but rather in the unsafe C programming language, thereby posing a security
risk [3].

Chapter 1: Introduction

1.2 Goal of the thesis

We implement a framework for both MirageOS and Solo5’s hvt, one of the hypervisors
MirageOS targets, that enables programmers to create their own drivers from scratch in
OCaml. Thereby, we are eschewing the unsafe C drivers of yesteryear, further reducing
application deployments’ attack surface.

Our framework enables MirageOS unikernels to take control of PCIe devices connected
to the host computer. MirageOS can communicate with a PCIe device through the de-
vice’s registers and via main memory by way of Direct Memory Access (DMA). As driver
bugs or misconfigurations might compromise an application’s security, our framework
limits a device’s view of main memory to only specific areas through the CPU’s built-in
IOMMU. Incidentally, this also eases driver programming significantly by translating
memory accesses from both unikernel and PCIe device to the same physical memory
addresses.

We also port our network driver ixy.ml [7] to the new framework to prove the frame-
work’s functionality. ixy.ml is a network driver for the ixgbe family of 10GbE network
cards written in OCaml. Currently, it only exists as an OCaml library running as a
userspace driver on Linux. Users of ixy.ml have to write network applications targeting
its specific programming interface. With our port, any MirageOS application may use
ixy.ml (and the network card controlled by ixy.ml) as a network device.

2

Chapter 2

MirageOS

MirageOS’ website states that "MirageOS is a library operating system that constructs
unikernels." [25]. Its structure is fundamentally different from most modern operating
systems. There is no concept of multiple users, multiple processes, etc. Features typi-
cally supplied by an operating system such as networking and file systems are instead
provided by MirageOS’ libraries. MirageOS applications are single OCaml programs
embedded into a statically linked, bootable virtual machine image. Such an image is
called a unikernel [11] [12].

2.1 Compilation Targets

MirageOS targets a wide variety of host operating systems and hypervisors. It can gen-
erate unikernels for the Xen hypervisor or the Solo5 unikernel runtime [27]. It can also
generate standard executables for Unix-like operating systems such as Linux, FreeBSD
or macOS. Developers can easily test their applications on their local machines; once
the code is ready for deployment, it simply needs to be recompiled for the production
target.

2.2 MirageOS programming

Users write MirageOS applications in the OCaml programming language. A MirageOS
application differs from typical OCaml programs in that it does not contain a normal
entrypoint. The equivalent of an entrypoint is a functor (called Main by convention) sup-
plied by the programmer. OCaml functors are explained in Section 2.2.1. In MirageOS’

Chapter 2: MirageOS

module type Predicate = sig
type t
val predicate : t -> bool

end

module Quantifiers (X : Predicate) = struct
let rec for_all = function
| [] -> true
| x :: xs -> X.predicate x && for_all xs

let rec exists = function
| [] -> false
| x :: xs -> X.predicate x || exists xs

end

Figure 2.1: Example functor

case the modules given to the Main functor contain the operating system functionality
provided by MirageOS’ libraries.

2.2.1 OCaml functors
A functor in OCaml differs from functors in other languages: it can be thought of as
a function mapping an OCaml module onto a new module or functor. A module is a
collection of OCaml types, values, nested modules, and module types. A module type
assigns a name to a module signature; a module signature describes a module’s contents.

Consider the (admittedly very contrived) example in Figure 2.1. It defines a module
type Predicate and a functor Quantifiers. Modules satisfying Predicate’s signature
define a type t as well as a predicate on t. When applied to such a module, Quantifiers
generates a new module containing implementations of universal (∀) and existential (∃)
quantification for lists of t.

2.2.2 MirageOS functors
Suppose a MirageOS program requires an IPv4 network stack. In this case the program’s
Main functor would be parameterized over a module of type Mirage_stack.V4 — that
is, a module containing UDP/TCP send and receive functionality.

Programming in this way makes switching implementations easy. Depending on the
target platform, MirageOS supplies an appropriate module implementing an IPv4 net-
work tack that satisfies the Mirage_stack.V4 signature — that is, a library calling the
appropriate platform-specific functions for sending and receiving data.

4

2.2 MirageOS programming

open Lwt.Infix

module Main (S : Mirage_stack.V4) = struct
let rec echo flow =

S.TCPV4.read flow >>= function
| Error _
| Ok `Eof -> S.TCPV4.close flow
| Ok (`Data buf) ->

S.TCPV4.write flow buf >>= function
| Error _ -> S.TCPV4.close flow
| Ok () -> echo flow

let start s =
S.listen_tcpv4 s ~port:8080 echo;
S.listen s

end

Figure 2.2: MirageOS echo server

Consider the example in Figure 2.2. It defines a functor Main that requires a module
fulfilling the signature Mirage_stack.V4. When applied to such a module, Main gen-
erates a new module containing a start function. This function will be called after
MirageOS’ platform-specific initialization code has run. In this example, start installs
a listener on TCP port 8080 that calls echo when receiving a new connection.

The echo function tries to read data from the TCP connection (called flow in MirageOS)
and sends it back. When there is a connection error or the connection is closed by the
other side, echo also closes the connection. Of note is the required explicit error handling
enforced by MirageOS’ libraries and OCaml’s type system.

To build a unikernel from the source code in Figure 2.2, the programmer must also
provide a configuration. The configuration tells MirageOS which modules to apply in
which order to which functor. Additionally it may take care of runtime argument parsing
(this is beyond the scope of this example). The configuration is also written in OCaml,
but it is only executed at compile time. MirageOS uses a metaprogramming library
called Functoria [15] to generate appropriate functor applications from programmer-
provided configurations.

The example configuration in Figure 2.3 lets MirageOS decide on an appropriate network
stack (generic_stackv4 default_network).

Lastly the user needs to compile the unikernel by selecting a target platform and op-
tionally selecting details, such as which network stack on the target platform to use.

5

Chapter 2: MirageOS

open Mirage

let main = foreign "Unikernel.Main" (stackv4 @-> job)

let stack = generic_stackv4 default_network

let () =
register "echo" [
main $ stack

]

Figure 2.3: Example echo server configuration

$ mirage configure -t macosx --net socket
$ make depend
$ make

Figure 2.4: Example mirage invocation targeting macOS

They do this by invoking the mirage [16] utility. The example invocation in Figure
2.4 tells the mirage utility to target the macOS operating system (by generating a
standard Mach-O executable) and to use macOS’ network stack (via the POSIX socket
API) instead of a MirageOS-provided one. mirage generates a Makefile that installs the
appropriate system and opam packages (make depend) and builds the unikernel (make).

2.3 Why unikernels?

The MirageOS authors cite both security and efficiency as reasons to consider uniker-
nels [12].

2.3.1 Security
Unikernels generally contain only the code necessary for implementing their function-
ality. A typical Linux server deployment contains millions of lines of code that are
not strictly necessary for a job such as serving static webpages. This unnecessary code
likely still contains security flaws that may be exploited even though the code is not
contributing to the deployment’s functionality.

OCaml is a type-safe and memory-safe language. Its compiler statically checks all
types at compile-time and its runtime dynamically checks memory accesses. Thus many
common programming mistakes can be prevented.

Since the unikernel is statically linked and there is absolutely no dynamic loading of
code, code injection attacks can be prevented entirely.

6

2.4 Drivers in MirageOS

2.3.2 Efficiency
In cloud environments applications are oftentimes deployed using virtual machines. It
is not uncommon to deploy an entire virtual machine running an operating system like
Linux for a single server process. This type of deployment has a lot of memory and
processor overhead due to each virtual machine requiring an entire operating system.
Some techniques like same-page merging might lessen this effect, at the cost of increased
CPU usage.

Unikernel deployments on the other hand only contain the application code and its de-
pendencies. Deploying a unikernel is much more efficient than an equivalent deployment
using virtual machines [12].

Another popular way of deploying applications is OS-level virtualization, an approach
commonly known as containerization. OS-level virtualization runs an application as a
standard process on the same OS kernel as the deployment’s host but with a different
userspace. MirageOS’ spt target (which is part of Solo5) uses OS-level virtualization to
deploy a unikernel as an isolated process instead of in a virtual machine [28].

2.4 Drivers in MirageOS

MirageOS provides no drivers for hardware devices; all hardware communication must
be done by the host system. MirageOS itself communicates with the host system via
system-specific stubs. Our ixy.ml userspace driver for Intel ixgbe network cards has
been ported to MirageOS’ Linux target. We have additionally ported ixy.ml to our
newly created framework as detailed in 5.

2.5 MirageOS structure

MirageOS’ protocol implementations are structured using explicit layering. A protocol
is implemented as a functor mapping a lower-level protocol implementation to a higher
level protocol implementation. For example, assembling a MirageOS network stack is
done by sequentially applying functors to some base implementation of a network device.
Strict interfaces, that the modules need to adhere to, guarantee interchangeability of
components.

Suppose a unikernel requires a network device for communication and a block device
for storage. It declares dependencies on Mirage_net.S and Mirage_block.S, but does
not specify implementations for these signatures. Since all MirageOS network devices
satisfy the Mirage_net.S module signature and all MirageOS block devices satisfy the

7

Chapter 2: MirageOS

Mirage_block.S module signature, at compile time any suitable network and block
device can be plugged into the unikernel.

Figure 2.5 shows the structure of such a unikernel using MirageOS’ Unix backend on
Linux. The Unix backend runs unikernels as standard processes without any special
isolation. Components drawn in gray are part of Linux, and those drawn in blue are
part of MirageOS.

The user-supplied application contains the Main functor and all the actual application
code.

MirageOS provides mirage-net-unix [21] which connects to a TAP device on Linux and
forwards traffic between the TAP device and the unikernel. MirageOS’ mirage-block-
unix [18] similarly wraps Linux’s block devices. Both mirage-net-unix and mirage-block-
unix provide modules satisfying the signatures Mirage_net.S [19] and Mirage_block.S [17]
respectively.

Usually there exists at least one implementation of each low-level module signature for
each MirageOS compilation target, e.g. mirage-net-solo5 [20] implements Mirage_net.S
on any of Solo5’s backends (see Chapter 3),mirage-net-xen [22] implements Mirage_net.S
on Xen.

Each component of MirageOS’ protocol stacks in turn just transforms some lower-
level modules to a module conforming to a higher-level module signature, e.g. apply-
ing Ethernet.Make to a module satisfying Mirage_net.S creates a module satisfying
Mirage_protocols.ETHERNET, the signature of MirageOS Ethernet stacks.

2.5.1 Platform libraries
MirageOS supplies basic platform libraries for each of its target platforms. These li-
braries contain the unikernel’s actual main function on each platform that initiates the
unikernel’s setup procedure and runs its cooperative multithreading scheduler. Coop-
erative multithreading in MirageOS is described in more detail in section 2.5.2.

MirageOS platform libraries also contain a sleep function that instructs the unikernel
runtime to wake the unikernel once a given sleep timer runs out.

2.5.2 Cooperative multithreading in MirageOS
MirageOS makes use of Lwt [13], a cooperative multithreading library written in OCaml.
Lwt’s basic type is the promise, a type whose value will be determined at some time in
the future. A promise that at some point in the future will resolve to a value of type
int has type int Lwt.t.

8

2.5 MirageOS structure

Linux

MirageOS

mirage-net-unix mirage-block-unix

User Application

block deviceTAP

Figure 2.5: Overview of a MirageOS unikernel (containing an application) running on Linux

9

Chapter 2: MirageOS

Lwt provides a monadic interface for chaining promises together, i.e. waiting for some
promise to evaluate and then taking its value and creating a new promise from it by
applying some function.

Chaining operations is done using a function called bind (usually called using the »=
operator). Whenever bind is used to chain promises together and one promise resolves
to a value, Lwt may interrupt the chained computation and schedule a different promise
to be evaluated.

Promises can also voluntarily give up their CPU time and yield to another promise by
calling Lwt.pause. They are added to a set of paused promises and woken up once
there are no other promises ready to run.

MirageOS platform libraries run Lwt’s "engine", i.e. a loop that attempts to evaluate
promises and wakes up paused promises if there is nothing to evaluate.

10

Chapter 3

Solo5

Solo5 calls itself a "sandboxed execution environment for unikernels" [27]. Effectively
it is an interface between a unikernel and a host operating system’s virtualization en-
vironment. Each virtualization environment is served by a so-called tender: a small
program setting up the unikernel’s required environment, loading the unikernel and
communicating with it at runtime. There are two tenders: spt (sandboxed process ten-
der) runs unikernels in a seccomp sandbox, whereas hvt (hardware virtualized tender)
runs unikernels in a virtual machine.

We will focus only on hvt which interfaces with Linux’s, FreeBSD’s and OpenBSD’s
native hypervisors. We will limit ourselves further to Linux’s popular KVM hypervisor
on the x86_64 architecture.

Solo5 is written mostly in C with some additional assembly as an entrypoint. At the
time of writing the hvt tender’s bindings that run inside the x86_64 KVM virtual
machine consist of around 1340 lines of C code with an additional 360 lines of C code
in header files and around 90 lines of assembly, a far cry from the millions of lines of
code of a typical OS kernel running inside a VM.

3.1 MirageOS on hvt

Figure 3.1 shows an overview of a MirageOS unikernel deployment on Solo5’s hvt.
Components drawn in gray are part of Linux, components drawn in green are part of
hvt, and those drawn in blue are part of MirageOS. Solid arrows indicate application
data transfer; dashed arrows indicate configuration data transfer.

Chapter 3: Solo5

The shown deployment is structurally similar to the one shown in Figure 2.5 from
Section 2.5. It also contains a user application that requires access to both a block
device and a network device.

3.2 hvt on KVM

hvt’s operation can be divided into two phases: setup and runtime. During setup, hvt
creates a KVM virtual machine, configures its parameters and loads the unikernel. Once
hvt starts the previously created virtual machine, it enters its runtime phase. During
this phase hvt facilitates communication between the unikernel and the host.

3.2.1 Setup phase
To begin the setup, hvt parses the manifest; a file typically generated by the unikernel’s
operating system that states the unikernel’s requirements, such as a network device or
a storage device for example. It is included in the unikernel’s ELF binary and is read
by hvt before initializing the unikernel. Figure 3.2 shows an example manifest of a
unikernel requesting a network device and a block device, both managed by hvt.

A module handles each device category (currently only networking and storage), e.g.
hvt_module_net.c handles networking and hvt_module_block.c handles block de-
vices.

After the manifest has been parsed, hvt creates a KVM virtual machine with a single
virtual CPU and a fixed amount of memory. It then proceeds to load the unikernel
(from the ELF binary) and starts the virtual machine. The Manifest is mapped into
the unikernel’s memory so both hvt’s bindings running inside the virtual machine as
well as hvt running outside the virtual machine see device configurations.

3.2.2 Runtime phase
During the runtime phase, hvt forwards data between the host and the unikernel. A
unikernel requiring network access, for example, communicates with a TAP device on
the Linux host through so-called hypercalls. Hypercalls are the hypervisor equiva-
lent of system calls. At the time of writing, hvt supports eight hypercalls; among
them are HVT_HYPERCALL_NET_WRITE and HVT_HYPERCALL_NET_READ for transmitting
and receiving network packets, respectively, as well as HVT_HYPERCALL_BLOCK_READ and
HVT_HYPERCALL_BLOCK_WRITE for reading from and writing to block devices, respec-
tively. We have previously explored hvt’s existing networking more closely [2].

12

3.2 hvt on KVM

Linux

hvt

KVM

MirageOS

hvt-bindings

hvt-modules

M
a
n
ife

st

mirage-solo5

mirage-net-solo5 mirage-block-solo5

User Application

block deviceTAP

Figure 3.1: Overview of a MirageOS unikernel running on Solo5’s hvt

13

Chapter 3: Solo5

{
"type": "solo5.manifest",
"version": 1,
"devices": [

{
"name": "service0",
"type": "NET_BASIC"

},
{

"name": "block0",
"type": "BLOCK_BASIC"

}
]

}

Figure 3.2: Example hvt manifest file of a unikernel requesting a network device and a block device

A unikernel targeting Solo5 must call hvt’s hypercalls to communicate. MirageOS does
this via the mirage-net-solo5 [20] and mirage-solo5 [23] libraries: The former imple-
ments the Mirage_net.S signature by calling the latter’s C bindings. mirage-block-solo5
implements the Mirage_block.S signature in the same way. The C bindings are used to
call Solo5’s C functions (also called bindings) from OCaml via OCaml’s foreign function
interface (ffi). The bindings are shown as "hvt-bindings" in Figure 3.1.

3.3 Hardware Access Modifications

To enable unikernels to communicate with hardware devices that are attached to the
host, we will modify Solo5’s hvt in two ways: we will map a PCIe device’s configura-
tion registers into the unikernel’s address space, and we will add support for mapping
DMA-ready memory (Direct Memory Access) into both the unikernel’s and the device’s
address space. Finally, some additional "plumbing" will connect those additions to the
manifest.

To make PCIe devices accessible to a unikernel and to facilitate DMA we make use of
Linux’s VFIO framework. VFIO is part of the Linux kernel and allows access to PCIe
devices from userspace through the CPU’s IOMMU [1]. The IOMMU maps PCIe de-
vices’ memory accesses from virtual addresses to phyical addresses and ensures memory
safety by preventing rogue devices from accessing memory that they are not explicitly
permitted to access. By binding the device to the vfio-pci driver and then opening
the corresponding /dev/vfio/vfio file, a device can be controlled from userspace and
the CPU’s IOMMU can be configured.

14

3.3 Hardware Access Modifications

We make use of ixy’s libixy-vfio [9], a library that implements VFIO setup and offers
facilities for mapping a device’s registers and configuration space into memory. ixy [5] is
a userspace network driver targeting ixgbe NICs written in C; the previously mentioned
ixy.ml driver is based on ixy.

3.3.1 Structure
Figure 3.3 shows an overview of a MirageOS unikernel running on hvt with PCIe sup-
port. Components drawn in gray are part of Linux, components drawn in green are
part of hvt, components drawn in blue are part of MirageOS, and those drawn in black
are hardware. Solid arrows indicate application data transfer; dashed arrows inidcate
configuration data transfer. Network and block devices controlled by hvt still work the
same way as in figure 3.1, but have been omitted for clarity.

Roughly speaking, the newly added PCIe module fetches the unikernel’s required PCIe
devices and DMA setup from the provided manifest and sets up mappings in both MMU
and IOMMU. The MMU mappings are created via KVM, whereas the IOMMU map-
pings are created via VFIO. Finally, the unikernel’s page table needs to be configured
to reflect the mappings set up in the MMU.

Note the lack of crossings of the hypervisor’s guest-host boundary between hvt and the
KVM virtual machine running the unikernel.

When mapping PCIe regions and DMA-ready memory into the unikernel’s address
space, its page table needs to be modified accordingly. Section 3.3.2 explains x86_64
paging in more detail.

15

Chapter 3: Solo5

Linux

hvt

KVM

MirageOS

PCIe binding

PCIe module

M
a
n
ife

st
mirage-solo5

mirage-pci-solo5

User Application

VFIO

P
C
Ie

re
g
io
n
s/

D
M

A
-re

a
d
y
m
e
m
o
ryIOMMU

PCIe device

driver MMU

Figure 3.3: Overview of a MirageOS unikernel communicating with PCIe devices on Solo5’s hvt

16

3.3 Hardware Access Modifications

3.3.2 x86_64 paging
3839474863

sign extend PML4 entry PDPT entry

0111220212930

PD entry PT entry page offset

Figure 3.4: x86_64 long mode virtual address structure (4 KiB page)

3839474863

sign extend PML4 entry PDPT entry

020212930

PD entry page offset

Figure 3.5: x86_64 long mode virtual address structure (2 MiB huge page)

3839474863

sign extend PML4 entry PDPT entry

02930

page offset

Figure 3.6: x86_64 long mode virtual address structure (1 GiB huge page)

x86_64 processors running in long mode (64-bit mode) employ 4 levels of page ta-
bles [10]. The levels of the page table are PML4 (page map level 4), PDPT (page
directory pointer table), PD (page directory), and PT (page table). Figure 3.4 shows
the structure of a virtual address. When looking up a virtual address’s corresponding
physical address, the virtual address is split into six sections: sign extend, four page
table offsets, and the physical-page offset. The PML4, PDPT, PD, and PT entries are
used as indices into the respective levels of the page table.

Each level is an array of pointers to the next level’s tables. Using the respective entries
as indices into these arrays, each successive table is determined. Each table’s entry also
contains some status bits; of note are P (present) and PS (page size). If an entry’s P
bit is not set, a page fault is triggered and the page table is not traversed further. If
an entry’s PS bit is set, the page table is not traversed further and the entry is directly
interpreted as the physical address of a page. This bit may be set in levels 2 (PD) and
3 (PDPT). In this case the remaining part of the address will be interpreted as the
phyiscal-page offset, adding 9 or 18 bits to the offset’s size, respectively. This is used

17

Chapter 3: Solo5

to implement huge pages (2 MiB or 1 GiB). Figure 3.5 shows the structure of a virtual
address pointing into a 2 MiB huge page; Figure 3.6 shows the structure of a virtual
address pointing into a 1 GiB huge page.

3.3.3 PCIe
A unikernel must declare the PCIe devices it needs access to in its manifest. A PCIe
device’s entry in the manifest contains an identifier (a name like pci0), some metadata
to ensure hvt will map the correct device (vendor and device identifier, PCIe class,
subclass and programming interface), and whether or not the device needs access to
main memory (by becoming a bus master). Additionally the unikernel needs to state
the amount of DMA-ready memory that should be mapped into its and its devices’
address spaces. Figure 3.7 shows the manifest of a unikernel requesting two PCIe
devices, a network device (managed by hvt), and 16 MiB of DMA-ready memory.

hvt maps the requested regions into the unikernel’s address space at predetermined ad-
dresses. For convenience we introduced a new function solo5_pci_acquire() to Solo5’s
unikernel-facing API that calculates the correct addresses and stores them in a structure
solo5_pci_info. This structure is shown in Figure 3.8. solo5_pci_acquire() also
retrieves device metadata (device ID, vendor ID, etc.) from the manifest.

Each PCIe device’s requested regions are mapped to a fixed address based on the device’s
position in the manifest (starting at 0, the n-th PCIe device appearing in the manifest
has position n) and the resource’s number (BARi has number i) according to the formula
239 + n ∗ 234 + i ∗ 230.

Figure 3.9 shows the memory map of a unikernel that requested BAR0 and BAR2 of the
first PCIe device in the manifest, BAR0 of the second PCIe device in the manifest, and
some amount of DMA-ready memory. The green areas are PCIe device regions; the blue
area is the DMA-ready memory area. A possible manifest file creating this memory map
is shown in Figure 3.7.

The base offset 239 was chosen as such to make its index in the top level (PML4) of
x86_64’s page table 1.

3.3.4 DMA
DMA-ready memory is also supplied by libixy-vfio [9] using the VFIO framework. A
single area of DMA-ready memory is allocated on huge memory pages (2 MiB) and
mapped into the unikernel’s address space at the fixed offset 240. This offset is chosen
similarly to the PCIe region offset; its index in the top level page table is 2.

18

3.3 Hardware Access Modifications

{
"type": "solo5.manifest",
"version": 1,
"dma_size": 16777216,
"devices": [

{
"name": "pci0",
"type": "PCI_BASIC",
"class": 2,
"subclass": 0,
"progif": 0,
"vendor": 32902,
"device_id": 4347,
"bus_master_enable": true,
"map_bar0": true,
"map_bar1": false,
"map_bar2": true,
"map_bar3": false,
"map_bar4": false,
"map_bar5": false

},
{

"name": "service0",
"type": "NET_BASIC"

},
{

"name": "pci1",
"type": "PCI_BASIC",
"class": 2,
"subclass": 0,
"progif": 0,
"vendor": 32902,
"device_id": 4347,
"bus_master_enable": true,
"map_bar0": true,
"map_bar1": false,
"map_bar2": false,
"map_bar3": false,
"map_bar4": false,
"map_bar5": false

}
]

}

Figure 3.7: Example hvt manifest file of a unikernel requesting two PCIe devices, a network device
and 16 MiB of DMA-ready memory

19

Chapter 3: Solo5

struct solo5_pci_info {
uint16_t vendor_id; /* This device's PCI vendor. */
uint16_t device_id; /* This device's device ID. */
uint8_t class_code; /* This device's class code. */
uint8_t subclass_code; /* This device's subclass code. */
uint8_t progif; /* This device's programming interface. */
bool bus_master_enable; /* This device is a bus master. */
uint8_t *bar0; /* This device's BAR0 or NULL. */
size_t bar0_size; /* This device's BAR0 size or 0. */
uint8_t *bar1; /* This device's BAR1 or NULL. */
size_t bar1_size; /* This device's BAR1 size or 0. */
uint8_t *bar2; /* This device's BAR2 or NULL. */
size_t bar2_size; /* This device's BAR2 size or 0. */
uint8_t *bar3; /* This device's BAR3 or NULL. */
size_t bar3_size; /* This device's BAR3 size or 0. */
uint8_t *bar4; /* This device's BAR4 or NULL. */
size_t bar4_size; /* This device's BAR4 size or 0. */
uint8_t *bar5; /* This device's BAR5 or NULL. */
size_t bar5_size; /* This device's BAR5 size or 0. */

};

Figure 3.8: Structure solo5_pci_info

Unikernels running on hvt do not use virtual memory; the page table maps each virtual
address to an identical physical address inside the KVM virtual machine. Programming
the IOMMU in the same way grants both the unikernel and its PCIe devices an identical
view of the DMA-ready memory. Thus, unikernel driver developers need not keep track
of virtual and physical addresses as there is no difference between them.

We created another convenience function solo5_dma_acquire() that checks whether
there is DMA-ready memory available and, if so, returns its address and size.

3.4 PCIe on other backends

It should be possible to integrate PCIe support into Solo5’s spt. libixy-vfio’s PCIe and
DMA setup code is independent of KVM and can be reused in spt. With appropriate
bindings and seccomp rules unikernels running on spt could also communicate with
PCIe devices.

hvt’s aarch64 backend should only require a different page table setup from x86_64;
KVM and VFIO support this architecture natively.

20

3.4 PCIe on other backends

zero page 0x00000000000

global descriptor table 0x00000001000

page table 0x00000002000

unikernel arguments 0x00000010000

text 0x00000100000

rodata
data
heap

hhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhh

stack

pci0 BAR0 0x08000000000 = 239 + 0 ∗ 234 + 0 ∗ 230

pci0 BAR2 0x08080000000 = 239 + 0 ∗ 234 + 2 ∗ 230

pci1 BAR0 0x08400000000 = 239 + 1 ∗ 234 + 0 ∗ 230

DMA 0x10000000000 = 240

Figure 3.9: Example hvt memory map on x86_64 using the manifest from Figure 3.7

21

Chapter 3: Solo5

FreeBSD and OpenBSD require different IOMMU setup code; libixy-vfio cannot be used
on these platforms.

22

Chapter 4

Mirage-pci

4.1 mirage-pci

Interfaces between devices and protocol implementations are represented as module
types in MirageOS. For example, there is a module type Mirage_net.S that defines the
types and functions a MirageOS network device must offer. Similarly the module signa-
ture Mirage_protocols.IPV4 defines the types and functions a MirageOS-compatible
IPv4 implementation must offer.

To introduce PCIe devices to this system of module types and modules, we define a new
module type Mirage_pci.S in a new library mirage-pci [8]. Figure 4.1 shows the entire
module type.

MirageOS’ signatures follow the functional programming style of separating data and
logic, i.e. each module declares a type t (imported from Mirage_device.S in this case)
that contains the module’s main data structure, and a number of functions to extract
information from t and to control the device represented by t.

Programmers familiar with the object-oriented style of programming might initially find
this style odd; where one would usually call a method on an object, instead an object
is passed to a function. This pattern is necessary due to MirageOS’ compilation style
(as detailed in 2.2).

4.2 Building unikernels with PCIe support

Besides creating the mirage-pci library, we also added support for building unikernels
that require PCIe devices to the mirage utility. It needs to select an appropriate

Chapter 4: Mirage-pci

(** A PCIe device. *)
module type S = sig

(* error handling omitted *)
include Mirage_device.S

(** The PCIe device's vendor ID. *)
val vendor_id : t -> int

(** The PCIe device's device ID. *)
val device_id : t -> int

(** The PCIe device's class code. *)
val class_code : t -> int

(** The PCIe device's subclass code. *)
val subclass_code : t -> int

(** The PCIe device's programming interface. *)
val progif : t -> int

(** The PCIe device's BAR0 region. *)
val bar0 : t -> Cstruct.t option

(** The PCIe device's BAR1 region. *)
val bar1 : t -> Cstruct.t option

(** The PCIe device's BAR2 region. *)
val bar2 : t -> Cstruct.t option

(** The PCIe device's BAR3 region. *)
val bar3 : t -> Cstruct.t option

(** The PCIe device's BAR4 region. *)
val bar4 : t -> Cstruct.t option

(** The PCIe device's BAR5 region. *)
val bar5 : t -> Cstruct.t option

(** The DMA memory allocated to this device. *)
val dma : t -> Cstruct.t

(** This device's identifier. *)
val name : t -> string

end

Figure 4.1: Mirage_pci.S module type

24

4.3 Mirage-pci-solo5

type device_info =
{ bus_master_enable : bool
; map_bar0 : bool
; map_bar1 : bool
; map_bar2 : bool
; map_bar3 : bool
; map_bar4 : bool
; map_bar5 : bool
; vendor_id : int
; device_id : int
; class_code : int
; subclass_code : int
; progif : int
; dma_size : int
}

Figure 4.2: Type representing a PCIe device’s metadata in MirageOS

implementation of Mirage_pci.S on each target platform. Currently it supports PCIe
devices on Solo5 and Unix, and, thus, will fail when selecting other target platforms.

On Solo5 our mirage-pci-solo5 library is selected; see Section 4.3. On Unix our mirage-
pci-unix library is selected; see Section 4.4.

Besides selecting an implementation, mirage also generates Solo5’s manifest (see 3.3.3).
Since we require a unikernel to declare its desired PCIe device and amount of DMA-
ready memory beforehand, we added a type device_info to mirage. It contains device
metadata similar to what is found in struct solo5_pci_info (see figure 3.8). Its
definition is shown in Figure 4.2.

To generate Solo5’s manifest, all devices declared in a unikernel’s config.ml file are
converted to entries in the new manifest. Since our implementation of DMA-ready
memory in Solo5 only supports a single region of memory visible to all devices, the
manifest generation simply sums up all devices’ DMA requirements.

4.3 Mirage-pci-solo5

To support our additions to Solo5 (see Section 3.3) in MirageOS, we created a li-
brary mirage-pci-solo5. mirage-pci-solo5 wraps the output of the previously introduced
(sections 3.3.3 and 3.3.4) functions solo5_pci_acquire() and solo5_dma_acquire()
in OCaml-compatible types: int for integers and Cstruct.t for memory regions.
Cstruct.t is part of ocaml-cstruct [26], a library commonly used in MirageOS to access
external memory, i.e. memory not managed by the OCaml runtime.

25

Chapter 4: Mirage-pci

type solo5_pci_info =
{ vendor_id : int
; device_id : int
; class_code : int
; subclass_code : int
; progif : int
; bus_master_enable : bool
; bar0_buffer : Cstruct.buffer
; bar1_buffer : Cstruct.buffer
; bar2_buffer : Cstruct.buffer
; bar3_buffer : Cstruct.buffer
; bar4_buffer : Cstruct.buffer
; bar5_buffer : Cstruct.buffer
}

type t =
{ id : string
; mutable active : bool
; info : solo5_pci_info
; bar0 : Cstruct.t
; bar1 : Cstruct.t
; bar2 : Cstruct.t
; bar3 : Cstruct.t
; bar4 : Cstruct.t
; bar5 : Cstruct.t
; dma : Cstruct.t
}

Figure 4.3: Type representing a PCIe device in mirage-pci-solo5

Figure 4.3 shows the representation of PCIe devices on Solo5. The type solo5_pci_info
represents the structure solo5_pci_info we added to Solo5’s unikernel-facing API (see
Section 3.3.3).

4.3.1 Scheduling
MirageOS’ platform libraries for Solo5 [23] work somewhat differently from the ones
used on other backends like Unix (see Section 2.5.1). Instead of only waking up sleeping
Lwt promises, mirage-solo5 also calls solo5_yield() to check whether packets have
been received by any of the network devices controlled by hvt. Additionally MirageOS’
sleep function is also implemented using solo5_yield().

Unfortunately this behavior clashes with poll mode drivers like ixy.ml. ixy.ml’s imple-
mentation of the Mirage_net.S signature needs to run in a tight loop and repeatedly

26

4.3 Mirage-pci-solo5

check whether the NIC has received packets. MirageOS’ API requires a network inter-
face to call a callback function for each received packet in a separate promise from the
one running the network driver.

Figure 4.4 shows ixy.ml’s listen function. It runs the recursive aux function (line 5)
in a loop. Functional programming languages oftentimes implement loops using tail-
recursive functions. In every iteration aux polls the driver (line 14) and, if there are
new packets, calls recv on each (line 19). If there are no new packets, the promise
that runs the function must explicitly yield to other promises, otherwise it could not
be unscheduled until a new packet is received. Lwt can only schedule other promises
at certain points, such as a bind (»= operator, line 20). While the driver receives no
new packets, no such point is hit and, therefore, an explicit call to Lwt.pause must be
inserted. Lwt.pause inserts the calling promises into a set of paused promises that may
be woken up again at any time. Lwt’s engine takes care of waking these promises up in
its main loop.

27

Chapter 4: Mirage-pci

1 let listen t ~header_size cb =
2 if header_size > 18 then
3 Lwt.return_error `Invalid_length
4 else
5 let rec aux () =
6 let recv pkt =
7 let open Ixy_core.Ixy_memory in
8 let buf = Cstruct.create pkt.size in
9 Cstruct.blit pkt.data 0 buf 0 pkt.size;

10 Ixy.Memory.pkt_buf_free pkt;
11 Lwt.async (fun () -> cb buf);
12 Lwt.return_unit in
13 if t.active then
14 let batch = Ixy.rx_batch t.dev 0 in
15 begin
16 if Array.length batch = 0 then
17 Lwt.pause ()
18 else
19 Array.fold_left
20 (fun acc v -> acc >>= fun () -> recv v)
21 Lwt.return_unit
22 batch
23 end >>= aux
24 else
25 lwt_ok_unit in
26 aux ()

Figure 4.4: ixy.ml’s implementation of Mirage_net.S’ listen function

Since mirage-solo5 incorporates solo5_yield() into its main loop, when there are no
network devices managed by hvt or these devices do not receive data, the main loop
becomes stuck until a deadline supplied by mirage-solo5 to solo5_yield() runs out.
This deadline depends on the presence of promises that called MirageOS’ sleep function.
If there are no such promises, the deadline may be as long as 24 hours.

To ensure poll mode drivers work properly, we modified mirage-solo5 to check whether
there are paused promises that can be awoken at any time and, if so, reduce the deadline
to 100 µs. If there are no promises waiting for network devices controlled by hvt to
receive packets, we can skip the call to solo5_yield() entirely.

28

4.4 Mirage-pci-unix

type t =
{ id : string
; fd : Unix.file_descr
; info : device_info
; mutable active : bool
; bar0 : Cstruct.t
; bar1 : Cstruct.t
; bar2 : Cstruct.t
; bar3 : Cstruct.t
; bar4 : Cstruct.t
; bar5 : Cstruct.t
; dma : Cstruct.t
}

Figure 4.5: Type representing a PCIe device in mirage-pci-unix

4.4 Mirage-pci-unix

For MirageOS’ Unix backend, we again used libixy-vfio [9] to create a library mirage-pci-
unix. Its behavior is almost identical to the PCIe supporting code we added to Solo5;
it simply lacks the KVM configuration since the unikernel is not running in a virtual
machine but rather as a standard process on Linux. Where previously the unikernel
was given access to PCIe devices and DMA-ready memory at fixed addresses, now we
provide it directly with virtual addresses as MirageOS’ setup code and the unikernel
itself share the same address space. Thus we can fulfill the Mirage_pci.S signature on
Linux.

Figure 4.5 shows the representation of PCIe devices on Unix. The field fd stores the
VFIO file descriptor that represents this device.

Figure 4.6 shows an overview of a unikernel running on Linux using MirageOS’ Unix
backend with PCIe support. Components drawn in gray are part of Linux, components
drawn in blue are part of MirageOS, and those drawn in black are hardware. Solid arrows
indicate application data transfer; dashed arrows inidcate configuration data transfer.
Network and block devices controlled by mirage-net-unix and mirage-block-unix still
work the same way as in Figure 2.5, but have been omitted for clarity.

mirage-pci-unix instructs VFIO to configure the IOMMU to map PCIe regions into
main memory visible to the unikernel. It also installs the same virtual-physical address
mapping into the IOMMU as is installed in the MMU so the unikernel and the PCIe
device can access the same area of memory under the same virtual address. The driver
fetches these memory areas from mirage-pci-unix in form of Cstruct.t’s.

29

Chapter 4: Mirage-pci

Linux

MirageOS

mirage-pci-unix

User Application

VFIO

P
C
Ie

re
g
io
n
s/

D
M

A
-re

a
d
y
m
e
m
o
ry

IOMMU

PCIe device

driver MMU

Figure 4.6: Overview of a MirageOS unikernel communicating with PCIe devices on Linux

30

Chapter 5

Performance

We evaluated our additions to Solo5 and MirageOS using a number of tools. All evalua-
tions were driven using ixy.ml. ixy.ml was initially created as a userspace network driver
for Intel ixgbe-compatible NICs written in OCaml. For this thesis we parameterized
the driver over an OS-agnostic PCIe device implementation that closely matches the
previously detailed Mirage_pci.S module signature. This allowed us to split the driver
into two versions.

A Linux-based version (ixy-freestanding) that does not use an IOMMU and is reliant
on Linux’s hugetlbfs and sysfs for DMA-ready memory and PCIe device access contains
most of ixy.ml’s old setup code.

A newly created version for MirageOS, mirage-net-ixy, fits into MirageOS’ system of
functors in that it maps a Mirage_pci.S-compatible module (i.e. a module wrapping
an ixgbe-compatible NIC) onto a module fulfilling the Mirage_net.S signature (i.e. the
signature of a MirageOS network device).

Both versions internally use ixy-core that contains the actual driver logic dealing with
the NIC configuration and transmitting and receiving packets.

Through mirage-net-ixy any MirageOS unikernel requiring a network device may use
ixy.ml to directly control an ixgbe-compatible NIC. No modification of the unikernel
is necessary, instead only its configuration will have to be adjusted to tell the mirage
utility to map an ixgbe-compatible NIC into the final unikernel.

Chapter 5: Performance

5.1 Raw PCIe and DMA performance

We created a simple unikernel using ixy.ml (without going through mirage-net-ixy) and
an Intel 82599ES NIC that listened for packets and sent them back on the same connec-
tion without changes to measure packet rates and packet latency. Its configuration is
shown in Figure 5.4; its source code is shown in figure 5.5. We ran the unikernel on both
hvt and Linux directly (via MirageOS’ Unix backend). The unikernel ran on an AMD
Threadripper 1950X 16-core CPU. 60-byte packets were generated at line rate (14.88
million packets per second) using another Intel 82599ES NIC and an Intel i7-3770K
CPU running MoonGen [4]. The unikernel was able to transmit at a rate of 13 million
packets per second on both hvt and Linux.

Figure 5.1 shows the structure of the benchmark unikernel running on hvt. Figure 5.2
shows the structure of the benchmark unikernel running on Linux. Figure 5.3 shows
the structure of the program running on Linux.

We compared this unikernel’s performance with an equivalent program using the older
Linux standalone version of ixy.ml (now renamed to ixy-freestanding) that does not use
an IOMMU and does not run as part of MirageOS. Its source code is almost identical
and shown in Figure 5.6.

Latency measurements for a variety of data rates are shown as CCDF plots in Figure
5.7. Above 6500 Mbit/s both versions were overloaded and latency spiked. We were
not able to measure any significant difference between both versions and were able to
conclude that our modifications do not hinder performance.

5.2 MirageOS networking performance

To evaluate TCP performance we used MirageOS’ tcpip [24] network stack running on
top of ixy.ml using our newly created mirage-net-ixy library.

We measured TCP throughput using the popular iperf utility and the MirageOS
unikernel implementation mirage_iperf [14] of iperf’s protocol.

ixy.ml is somewhat incompatible with MirageOS’ network signature in that it requires
the use of polling. Polling refers to repeatedly querying the driver for newly arrived pack-
ets as fast as possible and is commonly used in high-performance low-latency networks.
MirageOS instead relies on external notifications indicating arrived packets. When us-
ing Solo5’s integrated TAP network interface, MirageOS essentially sleeps until it is
notified by Solo5 of an arriving packet.

32

5.2 MirageOS networking performance

Linux

hvt

KVM

MirageOS

PCIe binding

PCIe module

M
a
n
ife

st

mirage-solo5

mirage-pci-solo5

Benchmark program

VFIO

P
C
Ie

re
g
io
n
s/

D
M

A
-re

a
d
y
m
e
m
o
ry

IOMMU

82599ES

ixy.ml MMU

Figure 5.1: Overview of the hvt benchmark unikernel

33

Chapter 5: Performance

Linux

MirageOS

mirage-pci-unix

Benchmark program

VFIO

P
C
Ie

re
g
io
n
s/

D
M

A
-re

a
d
y
m
e
m
o
ry

IOMMU

82599ES

ixy.ml MMU

Figure 5.2: Overview of the Linux benchmark unikernel

34

5.2 MirageOS networking performance

Linux

Benchmark program

VFIO

P
C
Ie

re
g
io
n
s/

D
M

A
-re

a
d
y
m
e
m
o
ry

IOMMU

82599ES

ixy.ml MMU

Figure 5.3: Overview of the Linux benchmark program

Without the scheduling fixes detailed in Section 4.3.1 this setup only managed a lack-
luster 3 MiB/s of TCP throughput on hvt using mirage-pci-solo5. With mirage-pci-unix
these scheduling issues went away and MirageOS’ network stack on top of ixy.ml man-
aged around 3.25 Gbit/s of TCP throughput. Once we applied the modification to
mirage-solo5, we achieved the same peformance on hvt.

Running the same benchmark with hvt’s built-in networking and a TAP device on Linux
yields 1.58 Gbit/s of TCP throughput. In this case moving the driver achieved twice
the networking throughput at the cost of CPU usage stemming from ixy.ml being a poll
mode driver.

MirageOS’s Unix backend can use both MirageOS’ built-in network stack via a TAP
device as well as Linux’s network stack via the POSIX socket API. The former was able
to achieve 272 Mbit/s, yielding a twelve-fold increase in throughput from moving the
driver into the unikernel.

Using Linux’s network stack via the POSIX socket API shifted most of the load from
the unikernel to Linux, which was able to schedule the driver and its network stack on
a different core. This lead to a TCP throughput of 9.41 Gbit/s.

Figure 5.8 compares the throughput measurements of the various MirageOS backends.
Green indicates results that have been made possible through our framework.

35

Chapter 5: Performance

open Mirage

let main = foreign "Unikernel.Main" (pci @-> job)

let pci0 =
let device_info =

{ vendor_id = 0x8086
; device_id = 0x10fb
; class_code = 0x2
; subclass_code = 0x0
; progif = 0x0
; dma_size = 16777216
; bus_master_enable = true
; map_bar0 = true
; map_bar1 = false
; map_bar2 = false
; map_bar3 = false
; map_bar4 = false
; map_bar5 = false
} in

pcidev device_info "pci0"

let () =
register "pci" [

main $ pci0
] ~packages:[package "ixy-core"; package "mirage-net-ixy"]

Figure 5.4: Configuration for the unikernel from Figure 5.5

module Main (S: Mirage_pci.S) = struct
module Ixy = Ixy_core.Make (Pci_mirage.Make (S))

let start pci0 =
let dev = Ixy.create ~pci:pci0 ~rxq:1 ~txq:1 in
while true do

let rx = Ixy.rx_batch dev 0 in
Ixy.tx_batch_busy_wait dev 0 rx;

done;
Lwt.return_unit

end

Figure 5.5: Unikernel that retransmits all received packets to the sender

36

5.2 MirageOS networking performance

let usage () =
Ixy_core.Log.error "Usage: %s <pci_addr>" Sys.argv.(0)

let () =
if Array.length Sys.argv <> 2 then
usage ();

let pci =
match Ixy.of_string Sys.argv.(1) with
| None -> usage ()
| Some pci -> pci in

let dev = Ixy.create ~pci ~rxq:1 ~txq:1 in
while true do

let rx = Ixy.rx_batch dev 0 in
Ixy.tx_batch_busy_wait dev 0 rx

done

Figure 5.6: Program that retransmits all received packets to the sender

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 1000 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 1500 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 2000 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 2500 Mbit/s

hvt mirage-unix Linux

Figure 5.7: Latency measurements using ixy.ml on hvt, mirage-unix and Linux

37

Chapter 5: Performance

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 3000 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 3500 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 4000 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 4500 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 5000 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 5500 Mbit/s

hvt mirage-unix Linux

Figure 5.7: Latency measurements using ixy.ml on hvt, mirage-unix and Linux

38

5.2 MirageOS networking performance

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 6000 Mbit/s

hvt mirage-unix Linux

0 90 99 99.9 99.990

20

40

60

80

100

Percentile

La
te
nc

y
[µ
s]

Latency when forwarding 6500 Mbit/s

hvt mirage-unix Linux

Figure 5.7: Latency measurements using ixy.ml on hvt, mirage-unix and Linux

0 1 2 3 4 5 6 7 8 9 10

Unix + TAP

Unix + Socket

Unix + ixy.ml

hvt + TAP

hvt + ixy.ml

TCP throughput [Gbit/s]

Figure 5.8: TCP throughput measurements using mirage_iperf

39

Chapter 5: Performance

MirageOS’ networking model is not well suited to ixy.ml’s DMA-based packet buffers as
there is no concept of freeing old buffers. MirageOS’ receive callbacks assume perpetual
ownership of incoming packet buffers, requiring mirage-net-ixy to perform a full copy
of every incoming packet from DMA-ready memory into memory managed by OCaml’s
runtime, lest it runs out of DMA buffers. Even if MirageOS were to establish an owner-
ship model for packet buffers, care would have to be taken to not keep any references to
a freed packet buffer anywhere in the network stack or pass such references to unikernels
using the network stack. Since DMA buffers will be overwritten after enough packets
have arrived, the underlying memory pointed to by these references will change. This
clashes with MirageOS’ safety-first approach and will likely not be adopted.

40

Chapter 6

Conclusion

In this work we have established the foundation of PCIe support in MirageOS and one
of Solo5’s unikernel tenders. Additionally we added PCIe support to MirageOS’ Unix
backend, a backend executing a unikernel as a standard process on Linux.

MirageOS unikernels, as well as other frameworks targeting Solo5’s hvt, are now able to
benefit from secure and low-overhead access to PCIe devices and DMA-ready memory.

Currently on hvt each unikernel is limited to a single mapped PCIe device, a limit
imposed by hvt’s bare-bones page table implementation.

Our newly created libraries can be found here:

• mirage-pci - https://github.com/Reperator/mirage-pci

• mirage-pci-unix - https://github.com/Reperator/mirage-pci-unix

• mirage-pci-solo5 - https://github.com/Reperator/mirage-pci-solo5

The required modifications to existing libraries can be found here:

• mirage - https://github.com/Reperator/mirage/tree/pci-support-stable

• mirage-solo5 - https://github.com/Reperator/mirage-solo5/tree/pci-support

• solo5 - https://github.com/Reperator/solo5/tree/pci-support

• ixy.ml - https://github.com/ixy-languages/ixy.ml

6.1 Future work

There are a number of directions for future development.

https://github.com/Reperator/mirage-pci
https://github.com/Reperator/mirage-pci-unix
https://github.com/Reperator/mirage-pci-solo5
https://github.com/Reperator/mirage/tree/pci-support-stable
https://github.com/Reperator/mirage-solo5/tree/pci-support
https://github.com/Reperator/solo5/tree/pci-support
https://github.com/ixy-languages/ixy.ml

Chapter 6: Conclusion

Additional hardware drivers targeting MirageOS can now be written. There is a mul-
titude of popular network adapters that are not supported by ixy.ml, and that could
be valuable targets to drive MirageOS adoption. Additionally NVMe drives connected
via PCIe could potentially be represented as MirageOS-compatible block devices, either
directly or with an underlying file system.

Besides creating new drivers, there are a number of MirageOS target platforms still
lacking PCIe support. MirageOS’ Xen target still lacks PCIe support entirely. Adding
PCIe support to hvt’s aarch64 KVM target might be of interest; on Linux it is natively
supported by the VFIO framework. By adapting hvt’s page table implementation on
aarch64 to additionally map PCIe regions and DMA-ready memory besides the uniker-
nel’s main memory, it should be possible to use our framework on this architecture as
well. hvt’s FreeBSD and OpenBSD targets are currently not supported by our frame-
work because it relies on Linux’s VFIO framework. Lastly, hvt’s page table implemen-
tation may be refactored to allow for greater flexibility and more fine-grained memory
mappings. This should lift the current limitation of one PCIe device per unikernel.

Besides hvt, it should be possible to extend Solo5’s PCIe support to spt, the sand-
boxed process tender. Unlike hvt, spt executes unikernels in a seccomp sandbox [28].
Solo5’s other backends will likely require more work since the VFIO framework our
implementation uses is limited to Linux.

42

Literatur

[1] The Linux authors. VFIO - "Virtual Function I/O". url: https://www.kernel.
org/doc/html/latest/driver-api/vfio.html.

[2] Fabian Bonk und Paul Emmerich. Networking in MirageOS. https://www.net.
in.tum.de/fileadmin/TUM/NET/NET-2019-06-1/NET-2019-06-1_10.pdf.

[3] Cody Cutler, M. Frans Kaashoek und Robert T. Morris. “The benefits and costs
of writing a POSIX kernel in a high-level language”. In: 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18). Carlsbad,
CA: USENIX Association, Okt. 2018, S. 89–105. isbn: 978-1-939133-08-3. url:
https://www.usenix.org/conference/osdi18/presentation/cutler.

[4] Paul Emmerich u. a. “MoonGen: A Scriptable High-Speed Packet Generator”.
In: Internet Measurement Conference (IMC) 2015, IRTF Applied Networking Re-
search Prize 2017. Tokyo, Japan, Okt. 2015.

[5] Paul Emmerich u. a. “User Space Network Drivers”. In: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS 2019). Sep.
2019.

[6] D. R. Engler, M. F. Kaashoek und J. O’Toole. “Exokernel: An Operating System
Architecture for Application-Level Resource Management”. In: Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles. SOSP ’95. Copper
Mountain, Colorado, USA: Association for Computing Machinery, 1995, 251–266.
isbn: 0897917154. doi: 10.1145/224056.224076. url: https://doi.org/10.
1145/224056.224076.

[7] Fabian Bonk. ixy.ml. https://github.com/ixy-languages/ixy.ml.
[8] Fabian Bonk. mirage-pci. https://github.com/Reperator/mirage-pci.
[9] Stefan Huber und Paul Emmerich. “Using the IOMMU for Safe and Secure User

Space Network Drivers”. M.Sc. Thesis. 2019. url: https://www.net.in.tum.
de/fileadmin/bibtex/publications/theses/2019-ixy-iommu.pdf.

https://www.kernel.org/doc/html/latest/driver-api/vfio.html
https://www.kernel.org/doc/html/latest/driver-api/vfio.html
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2019-06-1/NET-2019-06-1_10.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2019-06-1/NET-2019-06-1_10.pdf
https://www.usenix.org/conference/osdi18/presentation/cutler
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://github.com/ixy-languages/ixy.ml
https://github.com/Reperator/mirage-pci
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2019-ixy-iommu.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2019-ixy-iommu.pdf

Chapter 6: Literatur

[10] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Manual Volume
2: System Programming. 2020. url: https://www.amd.com/system/files/
TechDocs/24593.pdf.

[11] Anil Madhavapeddy und David J. Scott. “Unikernels: Rise of the Virtual Library
Operating System”. In: Queue 11.11 (Dez. 2013), 30–44. issn: 1542-7730. doi: 10.
1145/2557963.2566628. url: https://doi.org/10.1145/2557963.2566628.

[12] Anil Madhavapeddy u. a. “Unikernels: Library Operating Systems for the Cloud”.
In: Proceedings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems, asplos 2013, Irvine, California,
USA, March 16-20, 2013. 2013. doi: 10.1145/2999572.2999602. url: http:
//unikernel.org/files/2013-asplos-mirage.pdf.

[13] The lwt authors. lwt. https://github.com/ocsigen/lwt.
[14] The mirage-iperf authors. mirage-iperf. https://github.com/TImada/mirage_

iperf.
[15] The MirageOS authors. Functoria. https://github.com/mirage/mirage/tree/

master/lib/functoria.
[16] The MirageOS authors. mirage. https://github.com/mirage/mirage.
[17] The MirageOS authors. mirage-block. https://github.com/mirage/mirage-

block.
[18] The MirageOS authors.mirage-block-unix. https://github.com/mirage/mirage-

block-unix.
[19] The MirageOS authors. mirage-net. https://github.com/mirage/mirage-net.
[20] The MirageOS authors.mirage-net-solo5. https://github.com/mirage/mirage-

net-solo5.
[21] The MirageOS authors. mirage-net-unix. https://github.com/mirage/mirage-

net-unix.
[22] The MirageOS authors. mirage-net-xen. https://github.com/mirage/mirage-

net-xen.
[23] The MirageOS authors. mirage-solo5. https://github.com/mirage/mirage-

solo5.
[24] The MirageOS authors. mirage-tcpip. https://github.com/mirage/mirage-

tcpip.
[25] The MirageOS authors. MirageOS. https://mirage.io/.
[26] The MirageOS authors. ocaml-cstruct. https://github.com/mirage/ocaml-

cstruct.
[27] The Solo5 authors. Solo5. https://github.com/Solo5/solo5.
[28] Dan Williams u. a. “Unikernels as Processes”. In: Proceedings of the ACM Sympo-

sium on Cloud Computing. SoCC ’18. Carlsbad, CA, USA: Association for Com-

44

https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2999572.2999602
http://unikernel.org/files/2013-asplos-mirage.pdf
http://unikernel.org/files/2013-asplos-mirage.pdf
https://github.com/ocsigen/lwt
https://github.com/TImada/mirage_iperf
https://github.com/TImada/mirage_iperf
https://github.com/mirage/mirage/tree/master/lib/functoria
https://github.com/mirage/mirage/tree/master/lib/functoria
https://github.com/mirage/mirage
https://github.com/mirage/mirage-block
https://github.com/mirage/mirage-block
https://github.com/mirage/mirage-block-unix
https://github.com/mirage/mirage-block-unix
https://github.com/mirage/mirage-net
https://github.com/mirage/mirage-net-solo5
https://github.com/mirage/mirage-net-solo5
https://github.com/mirage/mirage-net-unix
https://github.com/mirage/mirage-net-unix
https://github.com/mirage/mirage-net-xen
https://github.com/mirage/mirage-net-xen
https://github.com/mirage/mirage-solo5
https://github.com/mirage/mirage-solo5
https://github.com/mirage/mirage-tcpip
https://github.com/mirage/mirage-tcpip
https://mirage.io/
https://github.com/mirage/ocaml-cstruct
https://github.com/mirage/ocaml-cstruct
https://github.com/Solo5/solo5

puting Machinery, 2018, 199–211. isbn: 9781450360111. doi: 10.1145/3267809.
3267845. url: https://doi.org/10.1145/3267809.3267845.

45

https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/3267809.3267845

	Introduction
	Outline
	Goal of the thesis

	MirageOS
	Compilation Targets
	MirageOS programming
	OCaml functors
	MirageOS functors

	Why unikernels?
	Security
	Efficiency

	Drivers in MirageOS
	MirageOS structure
	Platform libraries
	Cooperative multithreading in MirageOS

	Solo5
	MirageOS on hvt
	hvt on KVM
	Setup phase
	Runtime phase

	Hardware Access Modifications
	Structure
	x86_64 paging
	PCIe
	DMA

	PCIe on other backends

	Mirage-pci
	mirage-pci
	Building unikernels with PCIe support
	Mirage-pci-solo5
	Scheduling

	Mirage-pci-unix

	Performance
	Raw PCIe and DMA performance
	MirageOS networking performance

	Conclusion
	Future work

	Literatur

